Experimental evidence supporting the concept of light-mediated modulation of stem hydraulic conductance.
نویسندگان
چکیده
It is a well-described phenomenon that plant leaves respond to changes in light intensity and duration by adjusting leaf hydraulic efficiency, and there is current consensus that up- or down-regulation of water channels (aquaporins) in the plasma membrane of the bundle sheath and mesophyll cells play a central role in the underlying mechanisms. Recently, experimental evidence has been provided also for light-mediated changes of stem hydraulic conductance (K(stem)) in field-grown laurel plants. This effect was attributed to differences in potassium ion concentration of xylem sap as a function of light conditions. In the present article, we report evidence obtained in silver birch (Betula pendula Roth), supporting the concept of light-mediated modulation of K(stem). Both canopy position (long-term effect) and current photosynthetic photon flux density (PPFD; short-term effect) had a significant impact (P < 0.001) on K(stem) measured in shoots taken from the lower (shade shoots) and upper (sun shoots) third of the crowns of ∼25-year-old trees growing in a natural forest stand. The shade shoots responded more sensitively to light manipulation: K(stem) increased by 51% in shade shoots and 26% in sun shoots when PPFD increased from 70 to 330 μmol m⁻² s⁻¹. In 4-year-old trees growing in a dense experimental plantation, K(stem), specific conductivity of branch-wood (k(bw)) and potassium ion concentration ([K(+)]) in xylem sap varied in accordance with canopy position (P < 0.001). Both K(stem) and k(bw) increased considerably with light availability, increasing within the tree crowns from bottom to top; there was a strong relationship between mean values of K(stem) and [K(+)] in hydraulically sampled branches.
منابع مشابه
Coping with drought-induced xylem cavitation: coordination of embolism repair and ionic effects in three Mediterranean evergreens.
Embolism repair and ionic effects on xylem hydraulic conductance have been documented in different tree species. However, the diurnal and seasonal patterns of both phenomena and their actual role in plants' responses to drought-induced xylem cavitation have not been thoroughly investigated. This study provides experimental evidence of the ability of three Mediterranean species to maintain hydra...
متن کاملCoordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis.
Coordination of water movement among plant organs is important for understanding plant water use strategies. The hydraulic segmentation hypothesis (HSH) proposes that hydraulic conductance in shorter lived, 'expendable' organs such as leaves and longer lived, more 'expensive' organs such as stems may be decoupled, with resistance in leaves acting as a bottleneck or 'safety valve'. We tested the...
متن کاملHigher rates of leaf gas exchange are associated with higher leaf hydrodynamic pressure gradients.
Steady-state leaf gas-exchange parameters and leaf hydraulic conductance were measured on 10 vascular plant species, grown under high light and well-watered conditions, in order to test for evidence of a departure from hydraulic homeostasis within leaves as hydraulic conductance varied across species. The plants ranged from herbaceous crop plants to mature forest trees. Across species, under st...
متن کاملAquaporin gene expression and apoplastic water flow in bur oak (Quercus macrocarpa) leaves in relation to the light response of leaf hydraulic conductance
It has previously been shown that hydraulic conductance in bur oak leaves (Quercus macrocarpa Michx.), measured with the high pressure flow meter technique (HPFM), can significantly increase within 30 min following exposure to high irradiance. The present study investigated whether this increase could be explained by an increase in the cell-to-cell pathway and whether the response is linked to ...
متن کاملHydraulic conductance and rootstock effects in grafted vines of kiwifruit.
Whole-plant hydraulic conductance, shoot growth, and leaf photosynthetic properties were measured on kiwifruit vines with four clonal rootstocks to examine the relationship between plant hydraulic conductance and leaf stomatal conductance (gs) and to test the hypothesis that reduced hydraulic conductance can provide an explanation for reductions in plant vigour caused by rootstocks. The rootsto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 30 12 شماره
صفحات -
تاریخ انتشار 2010